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1 Encryption

A problem is said to be computationally easy iff it is computable in polynomial
time. It is said to be hard or computationally infeasible iff it cannot. Com-
putationally easy usually means that something can be computed in under 1
second. Computationally infeasible usually means it will take more than 100
years. Some computationally infeasible problems would take longer than the
age of the universe to calculate using current computers.

Denote S as the set of all strings. Denote N as the set of all natural numbers.

Definition 1. A hash function takes in some string of arbitrary length and
maps it to a string of fixed length, where:

1. Any minor difference in the input string drastically and unpredictably
changes the output string.

2. The output is evenly distributed. That is, for any two output strings, the
probablility that one of them will be outputted given an arbitrary input
string is the same.

3. The output is easy to compute.
Definition 2. A hash function is further said to be cryptographic iff:

1. The fastest way to compute a string that produces a given output is by
brute force; that is, one needs to try inputs one by one until one reaches
the desired output.

A useful hash function is therefore irreversible: it is computationally infea-
sible to find an input for almost all possible hash outputs. Such hash functions
exist; the SHA256 hash developed by the US National Security Agency outputs
a string of length 64 of alphanumeric characters. The possible output combi-
nations amount to 36%* ~ 4 x 10%°, which is around 50 magnitudes larger than
the number of atoms which make up the earth.

Definition 3. A Public Key encryption protocol is an ordered triple (G, h, k)
of functions such that:

1. G maps from N to S x S. Given any output of G, the first string is called
the “public key” and the second string is called the “private key”.

2. The function h maps from SxS to S. It takes in a private key and encrypts
a message m and produces a garbled string.

3. The function k£ maps from S xS to S. It takes in a public key and decrypts
a message and produces the original message m.

The following conditions need to be satisfied:

1. It is easy to compute a public and private key given any natural number
n. It will be usually easy to compute the public key from the private key.



2. It is computationally easy to encrypt a message using a public key.
3. It is computationally easy to decrypt a message using a private key.
4. Tt is computationally infeasible to decrypt any message given a public key.

5. It is computationally infeasible to deduce the private key from the corre-
sponding public key and any encrypted message.

A public key protocol allows the public to send encrypted messages to an
individual.

Suppose Bob wants to send Alice a secret message. First Alice will create
a private and public key with a secret random initial seed. The public key is
sent to Bob, and Alice keeps the private key secret. Bob uses the public key to
encrypt the message. Then Bob sends the message to alice. Since only Alice
has the private key, only she is able to decrypt the message.

However, this does not allow Alice to know whether the message she recieved
was from Bob. The public key can be used by anyone who has it to write a
message and send it to Alice. A digital signature by Bob addresses these issues.

Definition 4. A Digital Signature protocol is an ordered triple (G,S,V) of
functions such that:

1. G maps from the natural numbers to all ordered pairs of two strings.
Given any output of G, the first element of the ordered pair is called the
“public key,” and the second element the “private key”.

2. Given the set of all possible private keys outputted by function G, which
we denote G[N]2, the map S takes from G[N]? x S to the set S. The
output of S is called the “signature,” or “tag”. The input string is called
the “message”.

3. Given the set of all strings S, the map V takes from S x S x G[N]! to
the set {0,1}. If first input is the message and the second input is the
signature, and the third input is the public key, then the function returns
1. Otherwise, with very high probability, it returns 0.

The conditions need to be as follows:

1. It is easy to compute the ouput of G given any n € N. It will be usually
easy to compute the public key from the private key.

2. It is easy to compute the signature given any private key and message.
3. The function V is easy to compute. That is, it is easy to verify a message.

4. Given any message m and public key pk, and the functions of G, S,V it is
computationally infeasible to deduce a signature o such that V(m, o, pk)
gives a value 1.



5. Given signature, message, public key and the functions of G, S, V', it would
be computationally impossible to deduce the private key.

Now suppose Alice wants to make sure that Bob’s message is authentic. Bob
creates a public and private key using a random large natural number for the
digial signature protocol. Bob then shares the public key with Alice and keeps
the private key secret. Bob then uses the private key and the message to generate
a signature. Both the signature and the message is then sent to Alice, who has
Bob’s public key. Alice then inputs the message, signature, and public key
into the function V. If the message or signature were tampered with, then the
function with very high probability returns 0.

There are many of these functions and protocols which are publicly available
for use and implementation.

2 Digital Coin Motivation: Debt

Let us say that Alice and Bob go out to eat, and Alice has forgotten her wallet.
She asks Bob for 10 dollars to pay for mutton biryani, and writes an I0OU.
However, if Alice wrote “IOU 10 dollars - Alice”, and she forgets about it, she
wouldn’t know if it had been forged in her handwriting. Furthermore, since
Alice does this so many times with many people, Bob proposes that they agree
to a protocol, as follows. Alice first creates a public key and private key for a
digital signature protocol, and shares the public key with Bob, and signs the
string with her private key:

I0U#1
Alice will pay 10 Dollars.
Bob owns this ticket.

and creates some signature Alice_sig. Alice and Bob then both agree that
by signing this specific string, it means that alice needs to pay Bob 10 dollars,
and that the bond number is 1 to distinguish between multiple bonds (For
example, Alice might again ask for 10 dollars the next day, and we need to have
a different string to say that alice owes Bob 10 dollars twice. It will clearer why
we need to do this once we introduce how Bob confirms the IOU payment from
Alice). The string doesn’t have to be in the above format, of course, as long as
Alice and Bob both agree on rules of how to interpret the string. For example,
they can also instead to agree that

#1 _Debtor:Alice_Creditor:Bob_AmountInDollars:10

would mean the same thing. For now let us stick with the original and easier
to read format.
Then alice writes the following string for Bob to keep.

I0U#1

Alice will pay 10 Dollars.
Bob owns this ticket.
Alice_sig



Alice and Bob agree, that by signing the string, Alice is obliged to pay Bob
back 10 dollars. Let us think about this for a second. Since Alice signed the
string with her private key, the message and signature are sufficient for Bob to
claim to Alice that she pays Bob, because only she can produce the signature
corresponding to the string. Therefore, if Bob comes to Alice after one year,
and asks her for the money, and because Alice owed 20 other people 10 dollars
as well and couldn’t keep track of who she owed money to, Bob can show
Alice the string that she signed and claim that only she could have signed the
string because only she had her private key. Both Alice and Bob can verify
the signature with Alice’s public key that indeed it was signed by Alice. Since
they agreed beforehand that signing the string meant that Alice had to pay Bob
back, this is what she must do. It is important that Alice should not leak her
private key to Eve otherwise Eve can sign the following string:

I0U#2
Alice will pay 10 Dollars.
Eve owns this ticket.

and Alice would be obliged to pay Eve 10 dollars if she were to be shown the
string with the signature (if they had made a similar agreement).

Now what if Alice already paid Bob back but he comes back with the same
string a year later and asks Alice for money again? Alice and Bob agree to the
following protocol to avoid this situation.

Bob also creates a public and private key, for a digital signature protocol.
He keeps his private key secret, and shares his public key with Alice. They agree
that, if Alice paid Bob back for a specific ticket, he would append the string
“Alice has paid back the ticket to Bob.” and obtain a new string

I0U#1

Alice will pay 10 Dollars.

Bob owns this ticket.

Alice_sig

Alice has paid back the ticket to Bob.

and sign the updated string with his signature. Then only Bob would be able
to produce the signature such that the function V' outputs 1 on the message,
signature, and public key, so Alice and Bob both would be able to verify that
it was indeed Bob who signed it.

Now if Alice had paid Bob back the next day, and Bob adds the string and
signs it, then the contract is voided, and both Alice and Bob keep the final
string. If Bob comes back a year later and shows Alice the string

I0U#1

Alice will pay 10 Dollars.
Bob owns this ticket.
Alice_sig

and requests money from Alice, then Alice can simply show the string



I0U#1

Alice will pay 10 Dollars.

Bob owns this ticket.

Alice_sig

Alice has paid back the ticket to Bob.
Bob_sig

to rebuff Bob’s claim. Then Bob would have to accept that Alice did in fact
pay back the money for the ticket that he presented.

Now what if Alice and Bob agreed instead that when Alice paid Bob back,
that he would sign the following string?

I0U#1
Alice has paid back the ticket to Bob.

Then since the ticket number is shown so both Alice and Bob know to refer to
which TOU ticket Alice paid back to Bob.
This is also a valid method, but it’s best to keep things in a single file rather
than multiple files. It’s easier to lose things when you have too many of them.
Of course we would be able to specify more details of a the IOU, such as the
interest rate, the expiry date, and so on, and include other information, such as
date of crediting.

3 Digital Coin Contract

We have introduced a simple debt contract between two parties using the public
key protocol, which allowed two parties to securely agree to some arrangement
of money to be paid. What if we wanted to be able to trade this debt instrument
like a bond in some sort of market? It then is a simple matter of transferring
ownership from one party to another.

Suppose that Alice borrowed from Bob 9 dollars on Jan 1, 2021, and tells
Bob that she will repay him 10 dollars next year. She writes Bob an IOU as the
following string.

IOU#1 Jan 1, 2021

Alice will pay 10 Dollars on Jan 1, 2022.
Bob owns this ticket.

Alice_sig

Let’s say that there is a market in which these sorts of contracts are made every
day. Everyone in the market, including Alice and Bob agree to a single format
of strings that they can interpret into a contract of obligations, and can all
agree who needs to pay who if they look at the string. Everyone knows each
other’s public keys for their signatures, and can verify that Alice indeed signed
the string declaring that she pay back the debt in one year.

Let us say further that we want to have a system of transferring ownership
of debt. Bob, being aware that Alice has a habit of defaulting on her debts,
decides to sell it to an unknowing Eve on April 1, 2021, who doesn’t know



much about Alice. She gladly agrees to pay 9.5 dollars for the debt instrument.
Everyone participating in the market of buying and selling debt needs to agree
on a format of how this ownership transfer of a ticket works. Alice, Bob, and
Eve agree that the owner of the ticket is the one who the debtor is obliged to
pay back the money. They also agree that given a current owner x, and buyer ¥,
by appending a string “y owns this ticket.” at the end of the previous string and
then appending z’s signature on the whole string, the new string is interpreted
to mean that y is the owner of the ticket. The process of selling would comprise
of Bob recieving 9.5 dollars from Alice, and then appending the aforementioned
strings to obtain the new string:

I0U#1 Jan 1, 2021

Alice will pay 10 Dollars on Jan 1, 2022.
Bob owns this ticket.

Alice_sig

Eve owns this ticket. April 1, 2021
Bob_sig

and now Alice, when shown the string by Eve, would be obliged to pay Eve 10
dollars on Jan 1, 2022, instead of Bob.

Now suppose that Alice won the Jackpot for a million dollars. She is now
rich and can pay back any of her debts. Since Bob wants some of that money,
on Jan 1, 2022, he shows Alice the string:

I0U#1 Jan 1, 2021

Alice will pay 10 Dollars on Jan 1, 2022.
Bob owns this ticket.

Alice_sig

and asks Alice for money. But she also has a claim from Eve. Eve can show the
updated string to Bob, with his signature to show the transferral of ownership,
making Bob’s claim void. Therefore, Alice can look at all the claims for her
money at expiry, and find the string with the longest chain of ownership, and
the last person on the longest string is the current owner of the ticket. Therefore
all participants can agree on who owns the ticket at expiry.

We now move on to define the abstract definition of a digital coin. For a
market of participants, a digital coin is defined as follows.

Given participant n in our digital coin market, denote Public_n as the public
key of the nth owner of a digital coin, and Private n as the private key of the
nth owner of a digital coin. Given two strings strl, str2, we denote strl + str2
as the appendage of the two strings. Given a string str, denote str + sig_n to
denote the signature of participant n signed with the message str.

A digital coin is a string of the following form:

Bitcoin_1:
Public_0O
Public_1
sig_0O



Public_2
sig_1
Public_3
sig_2
Public_n
sig_n-1
We will say that the chain of ownership is verified iff for each string starting
from the top up to a signature, the ith signature belongs to the i — 1th last
public key in the string.
Now for reasons including data storage and efficiency in calculation (these
reasons will be elaborated when we discuss blockchain and proof of work), we

will incorporate the usage of a hash function in the digital coin.
When a bitcoin is created by owner 0, he will hash the following string:

Bitcoin_1:
Public_0O

We will denote the hash as hash 0, which we shall call the initial hash. This
will then be appended to end of the string to obtain the following new string:

Bitcoin_1:
Public_0O
Hash_O

When owner 0 decides to transfer the coin to owner 1, he Public_1 and appends
it to the end of the string. He then hashes Hash 0+ Public__1, the result which
we denote as Hash_1. This is then appended to the string. Finally, owner 0
digitally signs the Hash 1, which we denote as sig 0 and appends it to the
end of the string. So we get the following string:

Bitcoin_1:
Public_O
Hash_O
Public_1
Hash_1
sig_0

The string comprising of Public_i, Hash _i,sig_{i — 1} is called the ith
transaction. The procedure to obtain transaction ¢ from the previous transac-
tions is as follows:

Given a digital coin, to obtain transaction ¢, we take the previous hash and
the public key of the ith owner and obtain Hash_{i — 1} + Public_i and hash
it to obtain Hash _i. Then Hash i is signed by the owner ¢ — 1, obtaining
sig_{i —1}. Then the strings Public_i, Hash_i,sig_{i — 1} are appended to
the digital coin. This process is called a transaction, and we will say that the
coin is transferred from owner ¢ — 1 to owner .

There are several advantages to this approach. To verify signature i — 1, it
is enough to input Hash_{i— 1} + Public_i and the public key Public_{i—1}



and sig_{i — 1} into function V. For a million transactions, in the previous
approach, the input message in V' must be at least many million characters long,
whereas since the hash has a limited size, we only have a short string each time
we verify a signature.

Once owner ¢ verifies the chain of ownership, he can then confirm that all
previous transactions were valid, so he can accept the payment.

A digital coin contract is a set of rules describing the ownership of a digital
coin that market participants agree to. In particular, these comprise of the
following:

1. An agreement of the format of the digital coin, and the format of new
transactions appended to the digital coin. In particular, this includes
specification of the hash function used, the type of digital signauture pro-
tol, and how to name each coin, whether to include the time and date of
transaction, and the format of time and date of transaction, if included,
and so on.

2. The individual whose public key appears last in the digital coin is the
owner of the coin.

3. The coin with the longest chain of ownership is the only contractually
valid coin.

4. Participants may offer goods, services, or other assets in exchange for the
transferral of a contractually valid digital coin to their name.

Now consider this in a practical real world setting. A group of friends can agree
to this protocol, without relying on a central authority for legal enforcement of
debt payments. If Alice creates an IOU certificate for Bob, and doesn’t pay him
back, then the rest of the market participants can beat her up. The framework
of payments works out as long as the majority of the participants agree on the
rules and beat up people who participate in the market, but breach the rules.

As it turns out, the digital coin is insufficient as a transaction system as
it needs to address the double spend problem. This is discussed in the next
section.

4 The Double Spend Problem

Let us return to the tradable bond created by Alice and Bob. Alice and Bob
create the following string:

I0OU#1 Jan 1, 2021

Alice will pay 10 Dollars on Jan 1, 2022.
Bob owns this ticket.

Alice_sig

which they interpret to mean that Alice is obliged to pay Bob 10 dollars on Jan
1, 2022.



Now suppose that Bob decides to sell to Carol the ticket. After Carol’s
payment on April 1, 2022 of 9.5 dollars, he signs the string, and both he and
Carol have the following string:

IOU#1 Jan 1, 2021

Alice will pay 10 Dollars on Jan 1, 2022.
Bob owns this ticket.

Alice_sig

Carol owns this ticket.

Bob_sig

All is well, for now. But since this transaction occurred between only Bob
and Carol, neither Alice nor Dave knew about the transfer of ownership. Bob
realizes that he could make more money if he could sell Dave the bond if he
showed Dave the original string before Bob sent the coin to Carol. Dave looks
at the original string, and sees that Bob is the current owner, so gives Bob 9.5
dollars on April 2, 2022. Bob updates the string to the following;:

IOU#1 Jan 1, 2021

Alice will pay 10 Dollars on Jan 1, 2022.
Bob owns this ticket.

Alice_sig

Dave owns this ticket.

Bob_sig

Now under our digital coin contract, both Carol and Dave have valid claims to
Eve’s money, because both versions of the coin the longest chain of ownership.
Eve now has to pay 20 dollars in total rather than 10 at expiry, and Bob gets
away with 19 dollars.

The above problem is called the “double-spending problem” or the “double
spend problem”, which is cleverly solved by the Blockchain protocol.

5 The Blockchain Protocol

A blockchain contract is a set of rules that participants of a digital coin market
agree to in order to avoid the double spend problem.

We need some method so that if someone spends a coin, they cannot spend
it again. So if a coin has been spent, we reject later attempts for the previous
owner to spend it again.

In order to stop Bob from spending the same coin twice, everyone needs to
know when Bob makes the transaction. If everyone knows that Bob spent the
coin by sending it to Carol, then if he tries to sell the coin to Dave at a later
date, Dave will reject it, as he knows that Bob doesn’t posses the coin.

So we need the first rule:

e Once owner 7 of a coin completes a transaction and recieves goods, services
or other assets from another market participant, other market participants
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will not accept the coin as payment for goods, services, or other assets that
they may possess.

This rule can only be enforced if all transactions and when they occurred have
been made public. Along with a set of market participants, we also need to have
a set of network participants which are witnesses of each transaction. Each
network participant is called a node. Market participants can also be node
participants and vice versa. One method is to publish these on some webpage
or a newspaper, for everyone to see, but it would be highly inefficient to verify
transactions this way. We need to have a network of computers who are sent the
transactions, they are considered members of the public who can agree which
transactions are valid. But this is not enough. What if a transaction made was
only sent out to some of the nodes, and not all? Some users who were sent the
transaction would reject all future double spending but those who did not would
not reject it would not. In this way, the public would not be in agreement as
to what happened. We need a method to create a single authoritative history
of transactions which all nodes, whether they received a transaction or not, can
agree to. Further, nodes can become offline at any given moment but return to
the network and be able to obtain the history of what happened while he was
offline. New nodes need to be able to join the network and be able to obtain
the history of all transactions as well. The protocol propounded by Satoshi
Nakamoto that solves all these problems is called the “Blockchain”. We first
describe the blockchain protocol for digital coins and then explain why works,
and why it can be trusted.

Market participants and nodes all agree that when a transaction has been
made, it must be broadcast to all available nodes. From this information, nodes
will then add these transactions to what is called a blockchain, which is a series
of blocks. Each node has their own version of the blockchain stored in their
computer, but in the long run, the longest chain will be accepted by the most
nodes and will be the chain that has only valid transactions. How the blockchain
is created by the nodes is explained next.

To start a market, the initial block (known as the “genesis block”) is created
along with a hash of that block, which we call the block hash. The initial block
must contain information such as the rules of spending and recieving and what
kind of transactions are accepted for that blockchain, and the digital signature
protocol. For example, if the particular blockchain is for bitcoin, then the initial
block must specify that it records transactions for bitcoin and only bitcoin, not
some other coin such as etherium.

When a market participant transfers a coin to some other market participant,
he informs all nodes that the transaction took place. Each 10 minutes (approxi-
mately; how this is determined is explained afterwards), the nodes gather all the
transactions which they recieved into a single string called a “block” of trans-
actions. If a transaction is invalid, that is, a coin that has been spent is being
spent again, then the nodes don’t include that particular transaction in the
block. Each node might recieve valid transactions at different times and might
miss out on some transactions, but this is alright, for the moment. We then
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obtain the hash of these transactions, which we will call the transaction root
hash. The nodes then input the transaction root hash plus the previous block
hash plus some number « (natural or alphanumeric) into a hash function. « is
called a “nonce (number only used once)”. This number « needs to be one such
that the first n bits of the hash output is 0. This can only be done by brute
force and expends computational power. n is calculated by looking at the rate
at which previous blocks were added to the chain. Suppose M is the number of
blocks that were added to the chain within the last 24 hours. Then n is then
defined by the following equation:

N = Nprev + Activation(Round(144/M — 1))

where Activation is the activation function that outputs 1 if the input is positive,
and outputs -1 if the input is negative, and Round is the rounding function which
rounds to the nearest integer. Hence each block needs to be timestamped with
a GMT time, which receiving nodes can verify at each time. If the number of
blocks mined is on average once per 10 minutes in the past 24 hours, then we
see that n = npypey.

When a node finds «, we say that it “solved” the hash puzzle. Once such a
number is found by some node N, it gathers the previous previous block hash,
the root hash, and the nonce into one string called the “block header”. This
block header is then hashed to create the block hash for the current block. The
block of transactions gathered by node N, the block header and the current
block hash is then broadcast to all participant nodes. All participant nodes
who receive this information can either accept or reject this block. They accept
the block if and only if they are able to confirm:

1. All the coins are confirmed to not be already spent in the previous trans-
action blocks.

2. The purported transaction root hash is indeed obtained by hashing the
transactions that node N purported to have received.

3. The purported block hash is indeed obtained by hashing the string which
is previous block hash, the current root hash, and the nonce «a.

4. The purported block hash is all zero in its first n bits.

If the nodes accept the block, then they will record the block and its header
into their blockchain. Note that a set of transactions that one node received
may not be the same as what another node received.

Market participants will need to agree on how to interpret this blockchain:
The transaction at a given block came after transactions from any preceding
blocks. They are able to query nodes, who agree to comply with these queries,
about any past transaction in the blockchain of that particular node. If the
majority of nodes agree on a certain transaction, the market participant accepts
it as true.
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Market participants can therefore give away their goods or services once they
confirm that they have recieved the required amount on the blockchain.

We have therefore solved the double spend problem by agreeing on a single
history of transactions which is continually broadcast to all participating nodes.
Market participants who offer goods and services in exchange for ownership of
digital coins are then able to query nodes to see if the single history agreed by
nodes include the transferral of ownership of a coin to their name and then give
their goods to the person transferring the coin to them.

The above is a summary of the blockchain. The reader surely has many
questions about it, such as:

1. Why should the nodes need to solve a hash puzzle?
2. Why is n determined by the above equation?

3. How does each node determine how long they wait to collect transactions
before trying to solve the hash puzzle?

These will be answered in the following sections.

6 Proof of Work and its Explanation

Define an honest node as a node in the network which sticks the agreed protocol
exactly.

To solve the hash, one needs to expend electricity and cpu/gpu power. The
underlying assumption of the nodes is that the majority of them are honest. If
the majority of the CPU power of participating nodes are controlled by honest
nodes, then the chain that grows the fastest is the correct record of transactions.

There are multiple incentives against nodes being dishonest.

7 Transaction Format, Ownership of Coins

Suppose we know that Bob bought a digital coin as recorded in the ¢;th trans-
action in block ¢ and bought another one as recorded in the ¢;th transaction in
block j. He knows t;,4, because when the hash puzzle for block i was solved,
the node that solved it broadcast t;,7 to Bob. The same applies for j.

Suppose Alice is selling one apple for 1 digital coin, and Bob wants to buy it.
She creates a private and public key, and shares the public key with Bob. Bob
sends Alice ¢;,1,t;,j. Alice then queries the nodes to confirm that Bob owns 2
digital coins by querying the nodes. Denote Alice’s public key as Alice  Public
and Bob’s public key as Bob_ Public. Bob then creates the following string:

Time_and_Date
In:
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Bob_Public

Out:
Alice_Public: 1
Bob_Public: 1

and signs it to create

Time_and_Date
In: 2

1: t_i,i

2: t_j,j
Bob_Public

Out:
Alice_Public: 1
Bob_Public: 1
Bob_sig

In: 2 indicates that there are 2 previous transactions from which Bob obtained
his wealth. Alice Public: 1 means that Bob sent Alice 1 coin, and Bob_ Public:
1 means that Bob sent himself back 1 coin. Bob then broadcasts this string to
all available nodes. This string constitutes a transaction from Bob to Alice.
Now when a node receives this transaction, they verify that it is valid by:

1. Checking that the input transactions have not been spent already. This
means that the string ¢; +”,” +4 is not mentioned in any block after block
i. The same is done for ¢; and j. Strictly speaking, Bob does not have to
include all the previous unspent coins, but it would be good practice to

do so because it would be easier to keep track of his total unspent coins.
2. Checking that for each input transaction, the recipient is Bob.

3. Checking that the total that Bob recieved in each transaction totals the
amount Bob sends to Alice and to himself. In general, Bob can send to as
many people as he likes, he simply needs to include their public keys and
amounts in the output.

4. Checking, using Bob’s public key, that he indeed signed the message.

When all of these are satisfied, the nodes include it in their block to solve the
hash puzzle. Nodes shall agree on the following rule:

e If block is verified to be valid, then the nodes will no longer work on mining
their current block (unless they contain no overlapping valid transactions,
which is highly unlikely), and immediately start gathering the next set
of valid transactions. When they decide that enough transactions are
collected, they start to solve its hash puzzle insead of the previous block.
Further, when two verified blocks from different nodes are broadcasted
at the same time, the nodes agree that they will use the block hash of
the node that they received first to mine the next block. In this case we
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say that there are two possible branches, or chains of the blocks that we
will accept as the correct history of transactions. The tie is broken when
one of the chains becomes longer than the other, and nodes continually
update their version of the blockchain as the longest chain in the network
of nodes.

In general, it is usually not necessary for the blocks to even wait after a block
has been mined to collect transactions. When starts to solve the hash puzzle for
a block, it can stop collecting including new transactions for the block each time
it tries a nonce. The transactions that are broadcasted by market participants
can then be stored by the side until a new block is mined. When the new block
is mined the node looks at the transactions in it and removes the transactions
that overlap with the already mined block to avoid double spending (This is
because the other node could have received the transaction first and included it
in the block it was mining). It then works on mining the rest of the transactions
which it received while mining.

It is noted here that the chances of two chains branching indefinitely dimin-
ishes drastically over time. Furthermore, even if a certain proportion of nodes
have a branched version of the blockchain, the further back in time we go, there
will be less nodes disagreeing on the nth transaction block. So the more blocks
are mined from a previous transaction, the more certain it becomes in accepted
history.

8 Mining Digital Coins

Obviously without some incentive there would be no nodes willing to expend
computation time and electricity for nothing in return. Therefore all network
participants and network nodes agree to the following rule:

e When the network node who is also a market participant, with public key
Node Public__key gathers transactions into a block, he adds the following
string to the start of the block:

Time_and_Date
Node: Node_Public_key
Amount: A

Where A is a number that is given by
v

2Lt/T]

where U, T are natural numbers, and t is the current block number in the
chain whose hash puzzle is to be solved. Then when the node solves this
puzzle, all nodes and market participants agree that the node that solved
it is currently in possession of the amount A of digital coin. Hence the
process of obtaining a hash of a block is called “Mining”. The above string
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counts as a transaction that is inputted to obtain the root hash for the
block. Our rule also stipulates that if the amount A does not follow the
rules, and a greedy miner tries to make A larger than what was agreed
upon, all nodes shall reject this block and continue mining their own block
until they obtain the desired nonce.

In consequence, each miner needs to find their own nonce for their own unique
block. The nonce that each miner seeks to find is therefore in general different.
Further, we note that the sum of all mined coins cannot exceed a certain amount.
This is what makes the digital currency “inflation free”.

In the beginning, it is necessary to allow coins to be minted or mined in
this way, but as time goes on, the incentive for nodes to solve the hash prob-
lem is gradually replaced by transaction fees. It will be described how this is
implemented and why this is possible by purely market incentives.

9 Transaction Fees Bid and Ask and How They
Determine Block Size

Aside from mining, each node can also ask for a transaction fee from each
participant. Suppose Bob buys an apple from Alice for 1 coin. He then bids
for his transaction to be included in the next block by offering 0.5 coin to the
miner. The string that Bob signs is this:

Time_and_Date
In: 2

1: t_i,i

2: t_j,]
Bob_Public

Out:
Alice_Public: 1
Bob_Public: 0.5

He then broadcasts:

Time_and_Date
In: 2

1: t_i,i

2: t_j,]
Bob_Public

Out:
Alice_Public: 1
Bob_Public: 0.5
Bob_sig

to all the nodes.
Then each node can decide whether or not they include this in the current
block that they are mining. If they do, then the difference between the output
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and input is implied to be sent to the node which mined the block. We have
the following rule:

e When a participant happens to be a node, they can point to the block
that they mined and all participants and nodes shall agree that the par-
ticipant can spend the coins which are the amount of the sum of the mined
coins and the sum of all differences between inputs and outputs of each
transaction in the block.

The ask price of a block can be estimated by looking at the average transaction
fee in the previous block, and how fast they were accepted into a block. If a
transaction is taking too long to be processed, it can be made again with a
different transaction fee until it is included in the blockchain, it is only a matter
of re-signing the desired string and broadcasting it to all available nodes.

Now if a transaction references many previous transactions, it will not only
take longer to verify but also use up more disk space. Define transaction worth as
the adjusted fee of a certain transaction. The function that determines trans-
action worth is up to each miner to decide, but it would list how worthy a
transaction is to be included in their block. Transaction fees are determined
by the current market conditions: how much a digital coin is worth, how many
nodes are currently available, how many transactions there currently are, and
SO on.

Now given average transaction fee ¢, the nodes earn the an amount of coins
proportional to ¢ and the amount that is specified by mining protocol. Therefore
there is incentive to collect a large number of transactions before starting to
mine. Right after the previous block is mined and broadcasted to available
nodes, the nodes check and (if everything is in order) accept the block. They
then immediately start to gather unconfirmed transactions into a new block.
When they decide that it is enough, they will put other transactions on hold for
the next block and start mining the current block. If they wait too long, then
other nodes will have already had a significant head start on mining, so it will be
disadvantageous, as the likelihood of solving the hash puzzle first is diminished.
If they start too fast however, the processing power and electricity expenditure
would not justify the small number of transaction fees collected. Note that since
we only input the transaction root hash and not all the transactions into the
hash function, the amount of transactions does not change the processing power
and electricity expenditure.

Here, it is also possible to introduce the following rule (although it is not
strictly necessary), as Satoshi Nakamoto did:

e The block size cannot exceed 1 megabyte.

The reason for introducing this rule is because the broadcasting of the block
cannot be too slow, otherwise other blocks might be mined in that time, and it
could increase the probability that the single history of valid transactions could
fork into multiple versions if this happens.

Now let us consider possible cases that might make blocks very long or very
short. Suppose that the current market conditions cause transaction fees to be
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very small compared to the amount minted by each block. For example, the rule
that we agreed to might stipulate us to be able to obtain 300 coins by solving
the hash puzzle, but each transaction is only worth 0.0001 coin. Then if we
collected 10 transactions or 10000 transactions, we won’t get any substantive
difference in the amount of coins that we obtain by mining. So we might collect
only 1 transaction and start mining the block. This poses a problem as for the
system to work we need a substantive number of transactions to be included so
that transactions can be completed in a relatively fast pace.

But actually, in fact if each transaction is worth a very small amount com-
pared to the hash puzzle prize, it means that there are a very small number
of transactions; that is, the demand is very low. If there is low demand, then
that means only a small number of transactions need to be made at a given
time, so including a small number of transactions will not reduce the speed of
the transactions. Then if someone gets impatient and bids higher prices for
their transactions, this would increase incentive for each miner to include more
transactions in the block.

Conversely, if the transaction costs are currently very high compared to
the hash puzzle prize, then miners would be willing to wait longer to collect
transactions before starting to mine a block. In this case, as noted, they cannot
wait too long otherwise the probability of that a competitor node mines it
increases over time, and by then the demand for transactions to be included in
the block chain may decrease, and transactions will be worth less.

So we can see that the market of transactions self adjusts. There is no need
to dictate how many transactions need to be included in a certain block, or
how long miners need to wait to collect transactions before starting to mine the
block.

10 Self Perpetuating System

In a sense, the transaction fee one pays in the initial stages of the start of the
blockchain is in the form of the amount that the coin decreases in value by the
inflation of the value of the coins minted by the mining of new blocks. However,
as the demand to use the digital currency increases, the market price of coins
can also increase causing increased price of the coin (currency deflation) which
offsets the initial inflation. When inflation is stronger, one wants to spend them.
When deflation is strong, one wants to keep them. So initially, miners will ought
to want to spend their newly minted coins sooner rather than later, lest the coins
lose value over time. However, if a large number of market participants join as
the currency gets more mainstream, more miners will join in mining the digital
coin as the rewards for it are increased.

The incentive for each node to work starts with the ability to mine coins
(their creation) and then as the mining reward diminishes, it can be replaced
totally by transaction fees. This is only possible if the digital currency becomes
widely used. Once certain merchants start to accept the digital currency, it is
no longer necessary to mint new coins; it is enough to keep the currency going
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with only transaction fees.

When the currency becomes widespread and accepted by various merchants,
and the desirability to pay in the digital currency is high, then market partic-
ipants would be willing to pay a transaction fee. However, when desirability
to pay in the digital currency decreases, there will be fewer transactions per
minute. When this happens, the market price of transactions decreases. When
the market price of transactions decreases below the transaction fees of banks
and other currencies, the demand rises again. All of this discussion of course
needs to discount the price of volatility.

So the market is balanced: if the coin becomes too popular, the transaction
fees increase and it becomes less popular. If it becomes less popular, transaction
fees decrease, and it becomes more popular. Therefore there is no need for any
external incentive or central authority to enforce transactions in a certain coin.

11 Possible Market Participant Attacks and Why
They Don’t Work

A market participant may try to double spend a coin by signing a transaction
saying he transferred coins to Alice and then signing a transaction that he
transferred it to Bob, and then sending some nodes the first transaction and
other nodes the second transaction.

In this case, nodes which recieved the first transaction will say that Alice
owns the coins and nodes that received the second transaction will say that Bob
owns the coins. Say the block that a node mined contained the first transaction.
Then the nodes that contained the second transaction will gather it to the next
block, and see that it is no longer a valid transaction. It will therefore reject it
and not include it in the block that they are currently mining.

Now suppose that by chance, two nodes mined the blocks at the same time,
one containing the first transaction, and the other containing the second trans-
action. This is still not a problem, as once one chain becomes longer than the
other, the nodes will all agree which one is valid. Market particiants need to
simply wait until this happens to confirm the payment. To do this, they can
query enough nodes to convince themselves that the majority of them accepted
the payment as valid.

12 Possible Node Attacks and Why They Don’t
Work

We now consider cases where some network nodes are not honest.

12.1 Uncooperative/Stubborn Node

Suppose that all nodes currently are mining block n, and one node solves the
hash puzzle and broadcasts the block. The honest nodes then stop mining and
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start collecting a set of transactions for the next node to mine.

12.2 51% Attack

Suppose that a dishonest node has acqured the computation power that eclipses
that of all the other nodes. If a node has such computation power it would mean
that even with the rest of the computation power of the honest nodes combined,
the longest chain will be that of the dishonest node.

The following enumerates what the 51% attack allows the dishonest node to
do:

1. It allows the node to mine all future blocks on the blockchain from the
point of time they gained the majority of computation power. This done
as follows. When the node mines a block,

13 Other Remarks

13.1 Anonymity
13.2 Losing Coins

13.3 Maintenance
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