
A Brief Introduction to the Kalman Filter and a
Pairs Trading Strategy

October 2, 2021

The Kalman filter is an algorithm which provides an estimate of the “true
state” of a physical system by integrating the estimate of the previous state with
available observations at the current time. We provide a detailed exposition of
what this means via a simple motivating example.

We then describe a method to use the Kalman Filter for a long-short trading
strategy.

1 Example of a Simple Physical System
Here we introduce a simple example of a physical system which provides moti-
vation for the algorithm known as the Kalman filter.

The Kalman filter consists of an input u, the state of a system x, a system
of equations which tells us how we the state of the system at the next time step
t+ ∆t is related to the current state and u, a measurement y, which indirectly
gives information about the state of the system x.

Suppose we have a vehicle, vessel, or spaceship whose position we want to
track. For example, it is crucial for us to know the exact location of a spaceship
so that it arrive to its destination without crashing, and when using a navigation
system we don’t make the wrong turn.

To simplify the problem, let us consider a car that runs on a straight road
for some distance, say 1 km. The car is able to measure its velocity via a
speedometer. There is a GPS system that is able to track the position of the
car on the road. Neither of these are perfect; there will always be some error
in measurement of both velocity and position, although in this particular case,
GPS systems tend be quite accurate. At each time step, we record the position
reading from the GPS and velocity from the speedometer and use these infor-
mation to estimate the true position with more certainty than if we were to only
use one of those datum.

Denote x as the horizontal displacement of the car from the initial point;
denote u as the velocity of the car. Given time t, denote x(t) and u(t) as the
displacement and velocity at time t, respectively. Now to be precise, we need
another variable which may at this point seem redundant. Define y = x. We do

1

this because the internal “true” state of the system that we want to know is the
displacement, which we denote as x, and the measureable quantity that we will
use to judge the accuracy of our estimation is displacement itself. In general we
might only be able to measure some quantity that is only affected by the true
state, so we keep it as a separate variable y.

Given any time t, assume that we have available an estimate of the true
value of x(t). Denote this as x̂(t). Then given small enough ∆t, we know that
the following approximation holds.

x̂(t+ ∆t) ≈ x̂(t) + u(t)∆t (1)

ŷ(t+ ∆t) = x̂(t+ ∆t)

If the velocity u does not change throughout the journey, then the equation
holds exactly. Because x and u denote the exact theoretical location, and not
the measurement location, this is what we shall call our “estimation model”.
The “true state of the system”, which we would like to estimate, is x. Note that
given true velocity u, and true position x at time t, then this model holds (within
reasonable approximation). However, in practice, we only have an estimate of x
at time t, and our measurement of velocity at t. Therefore the best estimation of
the next time step with only these two pieces of information is given by equation
1.

Now we know that the measurement of both x and u is noisy. Assume that
given a measurement x(t) by the GPS system, the true value of the displacement
is distributed by

x(t) + v

where w is normally distributed N(0, σ2
x). Similarly, assume that given mea-

surement u(t) by the velocimeter, the true value of the velocity is distributed
by

u(t) + w

where v is normally distributed N(0, σ2
u).

The “measurement model” is therefore as follows.

x(t+ ∆t) ≈ x(t) + (u(t) + w)∆t (2)

= x(t) + u(t)∆t+ w∆t

y(t+ ∆t) = x(t+ ∆t) + v

Note that x(t + ∆t) has a random term due to inaccuracies in the reading
of the speedometer, while y(t+ ∆t) has a random term due to the reading error
of the GPS system.

We choose to measure the position and velocity N times, and denote x(t) :=
xt. Then the next increment will be xt+1 := x(t+ ∆t). Equation 1 becomes

x̂t+1 = x̂t + ut∆t

2

ŷt+1 = x̂t+1

and equation 2 becomes

xt+1 = xt + ut∆t+ w∆t

yt+1 = xt+1 + w

2 The Algorithm for the Physical System
We initialize four vectors, x̂, x̂−, x̂+, ŷ, u.

At the initial time t = 0, we need to specify x and u. We have that u is the
input, and is always provided. In our case, x = y and is therefore measureable,
but in general, since x is the internal state of the system that can’t be directly
measured, we wouldn’t be able to give a good specification for x. However, as
the algorithm progresses, it gives increasingly accurate estimates of x, and this
converging property allows us to be reasonably confident of the estimations of
x after a few time steps.

So suppose we are given xt and ut, where t need not be 0. We would like to
find a good estimate of the displacement, which we write as x̂t. Define x̂−(t+1)
by putting

x̂−t+1 := x̂t + ut∆t

since we know that if the car was indeed travelling at ut, then the equation
above is a valid estimate for the next true state.

Now if the next state is indeed x̂−t+1, then the measurement which is obtained
at the next state should be given by the equation

ŷ = x̂−t+1

We can now compare the measurement yt with ŷt. From these two pieces of
information, we would be inclined to believe that the true y is between these
two values. Denote the new estimate which we take between yt and ŷt as y.
Furthermore, if yt and ŷt are close together, then it gives us higher confidence
in y, while if they are far apart, we have lower confidence in y. In fact, if D is the
distribution of the measurement yt (the distribution of the true value given that
we measured yt from the GPS system), and if D′ is the distribution of ŷ which
was obtained from the estimation of the internal state, then the distribution of
y is given as the (normalized) multiplication of D with D′.

From this more accurate estimation of yt+1, we can work backwards to obtain
a more accurate estimation of xt+1 than just by using xt and ut or ŷt+1 alone.
Denote this estimation as x̂+t+1. In our problem, this is related by equality, so
we have

x̂+t+1 := ŷt+1

and we set
x̂t+1 := x̂+t+1

3

and repeat the calculation for t + 1 in place of t. What about the distribution
of x̂t+1? It carries over from ŷt+1. However, in general the relation between x
and y is more complex.

3 The Algorithm (General Case)
Given time step t, we assume that we are given a vector xt consisting of n
numerical values that characterize the (true) state of a system. We also assume
that we are given an (true) input ut, which relates xt to xt+1 by some equation

xt+1 = Axt +But + wt (3)

where A and B are n×n matrices and wk is a random vector of size n, normally
distributed, with covariance matrix Q. In this case, we see that xt+1 are linearly
related to xt and ut. Here wk accounts for so called “process noise”. That is
to say, xt and ut determine xt+1 up to a certain probabilistic distribution. It
might not be the case that xt+1 = Axt +But holds theoretically.

For example, consider if we wanted to conduct some arbitrary chemical ex-
periment wherein two chambers of gas is to be maintained at the same tem-
perature. These two chambers have thermometers between them. Chamber 1
is poorly insulated and is placed outside of our laboratory while chamber 2 is
very well insulated and is inside our laboratory. Thus chamber 1 is exposed
to the outside weather, which may be hot or cold. We are able to heat up or
cool down chamber 2 at will, but we rely on a system that tries to heat or cool
chamber 1 so that it remains the same temperature as chamber 2. When the
temperature deviates by more than 3 degrees, it cools chamber 1 by turning on
a refrigeration system and heats it by turning on a gas stove located beneath it
until the reading from the thermometer is reached. We can then put xt as the
temperature of chamber 1, A = 1, B = 1, and ut as the change in temperature
of chamber 2. Now even if we kept the temperature of chamber 2 constant,
there will still be variation in chamber 1 because the stove or the compressor
either turns on or off and cools or heats the chamber each 10 minutes. Assume
that our time step is one hour. Then each hour we don’t know whether the
chamber has just been cooled or heated or whether it had been left for a while
but had not deviated by 3 degrees yet, and therefore there may be noise in the
next state.

Alternatively, it is also possible that xt+1 = Axt + But holds theoretically
as in the case of our car, but the reading of ut might be noisy.

We also assume that the state xt+1 is related to some observable measure-
ment yt+1 by a linear equation

yt+1 = Cxt+1 + vt

where if y is of dimension m, we have that C is of dimension m× n, and where
vt is is a random vector of size n, normally distributed, with covariance matrix
R. In this case, vt is called “measurement noise” to mean that even with the

4

same state xt+1, the repeated measurement takes a probabistic distribution (c.f.
quantum mechanics?).

A.B,C,R,Q need to be defined and are in most cases taken to be constant
throughout time. Once we have our model and defined these matrices we can
start the calculation to obtain the estimated state and the distribution curve of
the true state at each time step.

Given the estimated state x̂t, we define

x̂−t+1 := Axt +But

This is known as the “a-priori state estimate” or the “predicted state estimate”.
Define

P−t+1 = APtA
T +Q

This matrix is known as the “a-priori state error covariance”. In the case that
t = 0, the matrix Pt can either be the zero matrix (in the case that we are
exactly sure of the true state of the system at t = 0), or if we know that the
true state is distributed like N(x0, π), then it is to be put as π.

Then it is a mathematical fact that given the only the state xt and the
input ut, the next true state at time t + 1 of the system is distributed like
N(x̂−t+1, P

−
t+1). We omit the proof.

Now assume that CP−t+1C
T +R is not degenerate (in practical cases, when

we define parameters C and R this will not happen). Define the matrix Kt+1

as follows.
Kt+1 := P−t+1C

T
(
CP−t+1C

T +R
)−1

Now we need the measurement yt to obtain the best estimate for the next
state. The “posteriori state estimate” or the “optimal state estimate” is defined
as follows.

x̂t+1 := x̂−t+1 +Kt+1(yt+1 − Cx̂−t+1)

We will not define in precise terms what the “optimal estimate” is nor will we
prove that this in fact gives the optimal estimate of the next state.

Now define
Pt+1 := (I −Kt+1C)P−t+1

Then it is a mathematical fact that given the information xt and the input ut,
along with the measurement yt+1 at time t+ 1, the true state of the system is
distributed like N(x̂t+1, Pt+1). Again, we omit the proof.

Noticing that we gave x̂t+1 and Pt+1, this information is enough to move to
the next step of the algorithm at t + 2, where ut+1 is given and yt+2 is to be
measured.

4 Long-Short Strategy
When two (or more) price series have some sort of correlation in between them
they typically allow for cointegration into a tradable single prices series given
some ratio maintained between them. Assume that two price series follows

5

some unknown parameterizable stochastic equation which allow cointegration.
Then if the parameters of this equation changes due to some changing market
condition, then this gives us a problem; our original ratio of the two assets is no
longer valid.

Suppose that asset y is related to asset h by some linear equation y = mh+b.
This is saying that we would be able to predict y by looking at h. This is
never exactly the case with any two assets, so we expect some variability when
we actually compare the true value of y. We assume that this is Gaussian
distributed:

y = mh+ b+ v; v ∼ N(0, R)

So in particular, if m is unchanging, then it suffices to perform the usual linear
regression with, for example, OLS.

We proceed to define the algorithm in for our strategy.
Define the “state” of the system as m. It is possible that m changes around

with some process noise. That is, we assume that m follows a random walk.

mt+1 =

(
mt

bt

)
+ wt; w ∼ N(0, Q)

Note that this specifies a model according to equation 3, where A = 1 and
there is no input u, or alternatively, we can consider B to be zero. If one knows
that oil or gold prices affects the USD/JPY for example, then it may be possible
to use it as an input. However since we need to specify its linear relation with
m, and it might not be easy to do so.

Our algorithm can be implemented if we specify the matrices A.B,C,R,Q.
We have that A = I, the identity matrix, B = 0, Ct = (ht, 1), a row vector, and
R and Q are chosen judiciously by the trader to suit the specific case that he is
dealing with.

In particular, one sensibly puts Q = αI, where α is a positive small real
number.

The following is an example implementation in python3. We assume numpy
is imported as “np”.

Kalman filter.
We are given Y as the N by 2 matrix which gives prices of a pair of assets.
Assume that N is defined.
Initialize inputs
h = Y[:,0,None]
y = Y[:,1,None]
C = np.append(h,np.ones((N,1)),axis=1)
Initialize variables to be calculated and recorded.
m = np.zeros((N,2))
P = np.zeros((N,2,2))
set up initial values of the internal state of the system as a guess.
In principle this cannot be “known”.
there are infinite solutions for m given y[0,0] and x[0,0],

6

so we chose one such that the intercept is 0.
the algorithm will find the optimal intercept as time progresses.
m[0,0] = y[0,0]/h[0,0]
m[0,1] = 0
specify R and Q matrices.
These are to be changed according to the trading pair.
Q = np.array([[0,0.01],[0,1]]) # In the case of stock prices, it is usually necessary
for the variance of the intercept be highly variable.
R = 0.1
Start the loop
for i in range(N-1):
m_minus = m[i,:,None]
P_minus = P[i,:,:] + Q
Numer = np.dot(P_minus, C[i+1,:,None])
Denom = 1/(np.dot(np.transpose(C[i+1,:,None]), np.dot(P_minus, C[i+1,:,None])) + R)
K = np.dot(Numer, Denom)
Adjust = np.dot(K, y[i+1,:,None] - np.dot(np.transpose(C[i+1,:,None]), m_minus))
m[i+1,:] = np.transpose(m_minus + Adjust)
P[i+1,:,:] = np.dot((np.eye(2,2) - np.dot(K,np.transpose(C[i+1,:,None]))), P_minus)

7

